Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network

نویسندگان

  • Chitrini Mozumder
  • Nitin K. Tripathi
چکیده

In recent decades, the world has experienced unprecedented urban growth which endangers the green environment in and around urban areas. In this work, an artificial neural network (ANN) based model is developed to predict future impacts of urban and agricultural expansion on the uplands of Deepor Beel, a Ramsar wetland in the city area of Guwahati, Assam, India, by 2025 and 2035 respectively. Simulations were carried out for three different transition rates as determined from the changes during 2001–2011, namely simple extrapolation, Markov Chain (MC), and system dynamic (SD) modelling, using projected population growth, which were further investigated based on three different zoning policies. The first zoning policy employed no restriction while the second conversion restriction zoning policy restricted urban-agricultural expansion in the Guwahati Municipal Development Authority (GMDA) proposed green belt, extending to a third zoning policy providing wetland restoration in the proposed green belt. The prediction maps were found to be greatly influenced by the transition rates and the allowed transitions from one class to another within each sub-model. The model outputs were compared with GMDA land demand as proposed for 2025 whereby the land demand as produced by MC was found to best match the projected demand. Regarding the conservation of Deepor Beel, the Landscape Development Intensity (LDI) Index revealed that wetland restoration zoning policies may reduce the impact of urban growth on a local scale, but none of the zoning policies was found to minimize the impact on a broader base. The results from this study may assist the planning and reviewing of land use allocation within Guwahati city to secure ecological sustainability of the wetlands. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aquatic insect community of Deepor beel (Ramsar site), Assam, India

An investigation on the aquatic insect community of 10 selected sites of Deepor beel, the only Ramsar site of Assam situated on the southern side of River Brahmaputra was carried out during the month of March to November, 2013. During the study period aquatic insect community was represented by 31 species belonging to 18 families of 5 orders. Record of 17 species and 8 families of the order Hem...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

Urban Sprawl Analysis and Modeling in Asmara, Eritrea

The extension of urban perimeter markedly cuts available productive land. Hence, studies in urban sprawl analysis and modeling play an important role to ensure sustainable urban development. The urbanization pattern of the Greater Asmara Area (GAA), the capital of Eritrea, was studied. Satellite images and geospatial tools were employed to analyze the spatiotemporal urban landuse changes. Objec...

متن کامل

New full adders using multi-layer perceptron network

How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2014